=s(in(x/cos(x/)dx因为tan(x/=sin(x//cos(x/=in2(x//[in(x/cos(x/]=(cosxsinx=cscx-cotx
cosx的原函数是ln|secx+tanx|+c。解答如下:
先算sinx原函数,s表示积分号
ssinxdx
=s(in(x/cos(x/)dx
=s[tan(x/cos2(x/]d(x/
=s[tan(x/]d(tan(x/)
=ln|zhitan(x/|+c
因为tan(x/=sin(x//cos(x/=in2(x//[in(x/cos(x/]=(cosxsinx=cscx-cotx
所以ssinxdx=ln|cscx-cotx|+c
scosxdx
=ssin(x+派/d(x+派/
=ln|csc(x+派/-cot(x+派/|+c
=ln|secx+tanx|+c