如果把历史比作一段录像,那么鸟就直接看到它的整个生命周期--一根长长的、直直的面条。他们怀疑为何数学能如此完美的描述宇宙乃是因为宇宙生来就是数学性的。天文理论宇
在我们很小很小,甚至尚未听说过数学这个词以前,我们都先天接受“亚里斯多德”模型。而“柏拉图”模型则来自于后天体验。现代理论物理学家倾向于柏拉图派,他们怀疑为何数学能如此完美的描述宇宙乃是因为宇宙生来就是数学性的。
宇宙的数学结构
宇宙的数学结构是抽象、永恒的实体,独立于时空之外。如果把历史比作一段录像,数学结构不是其中一桢画面,而是整个录像带。试设想一个由四处运动的点状粒子构成的三维世界。在四维时空--也就是鸟的视点--看来,世界类似一锅缠绕纠结的意大利面条。如果青蛙观测到一个总是拥有恒定速率,方向的粒子,那么鸟就直接看到它的整个生命周期--一根长长的、直直的面条。如果青蛙看到两个相互围绕旋转的粒子,鸟就看到两根以双螺旋结构缠在一起的面条。对青蛙来说,整个世界以牛顿运动定律和引力定律为规则运作;而对鸟来说,世界被描绘成“意大利面条几何学”--一种数学结构。青蛙本人也仅是面条--一大堆复杂到构成它们的粒子能存储和处理信息的面条。我们的宇宙要比上述例子复杂的多,科学家们还没有找到--如果有的话--那个能正确描述它的数学结构。
柏拉图
“柏拉图”派模型带来了一个新的问题,为何我们的宇宙是这个样子。对“亚里斯多德”派来说,这个问题是没有意义的:因为宇宙的物理本源就是我们观测到的样子。但“柏拉图”派不仅无法回避它,反而会困惑为什么它不能是别的样子。如果宇宙天生是数学性的,为什么它仅仅基于“那一个”数学结构?要知道数学结构是多种多样的。似乎在真实的核心地带有某种最基本的不公平存在。
作为解决该难题的一条路径,人们认为数学结构有着完全的对称性:基于任何数学结构的宇宙都确实存在。每一个数学结构都有与之相关的平行宇宙。构成这个宇宙的基础并不在该宇宙内而是游离于时间和空间之外。大部分平行宇宙内很可能不存在观测者。这种假说可以看成是本质上的柏拉图主义,它断言柏拉图领域提及的数学结构或是圣荷西州立大学的数学家rudyrucker所谓的“精神领域(mindscape)”都存在对应的物理真实。它也类似于剑桥大学的宇宙学家johnd.barrow提到的“天空中的π”,或是哈佛大学的哲学家robertnozick提出的“多产性原理”,或是普林斯顿的哲学家davidk.lewis所谓的“形式现实主义”。第四层终于宣告了多重宇宙在层次上的终结,因为任何自相容的物理理论都能表达成某种数学结构。
第四层多重宇宙的假设作出了可验证的预言。在第二个层次上,它包含了全体可能(全体数学结构)和选择效应。数学家们还在继续为这些数学结构分门别类,而他们最终应该发现,用来描绘我们世界的那个数学结构将会是所有符合我们观测结果的结构中最简单那个。类似地,我们将来的观测结果将会是那些最简单的、与过去观测结相一致的东西;而过去的观测结果也应该是最简单的、与我们存在相符合的那些。
想要定量化这种“简单”是个严峻的考验,与之相关的研究才刚刚起步。但最具震撼性和令人鼓舞的是,对称和恒定的数学结构力图表现出的简明与整洁也正是我们宇宙所展现的。数学结构趋向于越简单越好,那些复杂的附加公理无疑破坏了简洁。
奥卡姆
以上便是我们所讨论的平行宇宙理论,它分为由低到高四个层次,与我们熟知宇宙的差异也随层次不同越来越大。这些差异可以来自不同的初始条件(第一层);不同的物理常数、粒子种类和时空维数(第二层);不同的物理规律(第四层)。有意思的是,第三层才是几十年研究最火热的东西,因为它本质上没有增添任何新的宇宙类型。
未来十年内,发展迅猛的对宇宙微波背景和空间大尺度物质分布的测量会进一步确定空间的准确曲率和拓扑结构,其结果将直接支持或驳倒第一层多重宇宙的假说。这些测量结果也会验证“无序持续膨胀”理论,从而间接探测第二层多重宇宙。同时天体物理学与高能物理领域的巨大进展也将进一步阐明到底我们宇宙的哪些物理常数被“调节”过了,以此加强或削弱第二层多重宇宙的可信度。